PT-symmetric, quasi-exactly solvable matrix Hamiltonians
نویسندگان
چکیده
منابع مشابه
Solvable PT symmetric Hamiltonians
Within the so called PT symmetric version of quantum mechanics a brief review of the exactly solvable models is given. Distinction is made between the curved and straight coordinate lines, between their unbounded (aperiodic) and bounded (periodic) choices, and between the completely and partially solvable cases.
متن کاملQuasi-Exactly Solvable Hamiltonians related to Root Spaces
sl(2)−Quasi-Exactly-Solvable (QES) generalization of the rationalAn, BCn, G2, F4, E6,7,8 Olshanetsky-Perelomov Hamiltonians including many-body Calogero Hamiltonian is found. This generalization has a form of anharmonic perturbations and it appears naturally when the original rational Hamiltonian is written in a certain Weyl-invariant polynomial variables. It is demonstrated that for the QES Ha...
متن کاملQuasi Exactly Solvable 2×2 Matrix Equations
We investigate the conditions under which systems of two differential eigenvalue equations are quasi exactly solvable. These systems reveal a rich set of algebraic structures. Some of them are explicitely described. An exemple of quasi exactly system is studied which provides a direct counterpart of the Lamé equation.
متن کاملQuasi exactly solvable matrix Schrödinger operators
Two families of quasi exactly solvable 2 × 2 matrix Schrödinger operators are constructed. The first one is based on a polynomial matrix potential and depends on three parameters. The second is a one-parameter generalisation of the scalar Lamé equation. The relationship between these operators and QES Hamiltonians already considered in the literature is pointed out.
متن کاملOn quasi-exactly solvable matrix models
An efficient procedure for constructing quasi-exactly solvable matrix models is suggested. It is based on the fact that the representation spaces of representations of the algebra sl(2,R) within the class of first-order matrix differential operators contain finite dimensional invariant subspaces. The Lie-algebraic approach to constructing quasi-exactly solvable one-dimensional stationary Schröd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2007
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8113/40/43/014